Unit \# 1 - Direct Variation and Inverse Variation

Direct Variation Equation:

\qquad
where k is called the constant of variation
Wording: y varies directly with x

Inverse Variation Equation:

\qquad
where k is called the constant of variation
Wording: y varies inversely with x

$\underline{\text { Steps to Solve Direct and Inverse Variation Problems } \rightarrow}$

1.) Create an equation based on how the problem is worded where the constant of variation " k " is unknown.
2.) Substitute values in for each variable in the problem where then you will have to solve for k.
3.) Rewrite your equation (where k is now known) so you can answer questions using the completed equation.

Examples: Complete each problem using the appropriate type of variation.

1.) Suppose y varies directly with x where $\mathrm{y}=21$ when $\mathrm{x}=7$.
a.) Write an equation for this variation.
b.) Find y when $\mathrm{x}=15$.
c.) Find x when $y=72$.
2.) Suppose y varies inversely with x where $\mathrm{y}=2$ when $\mathrm{x}=9$.
a.) Write an equation for this variation.
b.) Find y when $\mathrm{x}=3$.
c.) Find x when $\mathrm{y}=\frac{2}{3}$.
3.) Suppose z varies directly with x and inversely with y where $x=6, y=2$, when $z=15$.
a.) Write an equation for this variation.
b.) Find z when $\mathrm{x}=4$ and $\mathrm{y}=2$.
c.) Find x when $\mathrm{y}=10$ and $\mathrm{z}=6$.
4.) A varies directly as B and inversely as the square root of C where $\mathrm{A}=\frac{3}{2}$ when $\mathrm{B}=2$ and $\mathrm{C}=16$.
Find C when $\mathrm{A}=9$ and $\mathrm{B}=6$.
5.) The height h of a cylinder varies directly with the volume of the cylinder and inversely with the square of the cylinder's radius r. If a cylinder's height is 147.2 ft , volume is $750 \mathrm{ft}^{3}$, and radius is 4 ft , then what is the radius of a cylinder with a height of 43.6 ft and a volume of $500 \mathrm{ft}^{3}$?

