Powers and Exponents Notes

Numbers using exponents are called powers. Numbers can be called perfect squares if they are the "square" of whole numbers.
The exponent tells you how many times to use the base as a factor.

Example \#1: Write 4•4•4•4•4using an exponent.

The base is \square . It is used as a factor \square times, so the exponent is \square

$$
\mathbf{4} \mathbf{4} \mathbf{4} \mathbf{4} \mathbf{4} \mathbf{4} \mathbf{4}=\mathbf{4}^{5} \quad \text { (4 is used as a factor } 5 \text { times) }
$$

Example \#2: Write 6^{3} as a product of the same factor. Then find the value.

The base is \square . The exponent is \square . So, \square is used as a factor \square times.

$$
\begin{aligned}
\mathbf{6}^{\mathbf{3}} & =\mathbf{6} \bullet \mathbf{6} \bullet \mathbf{6} & & \text { (Write } 6^{3} \text { as a product) } \\
& =\square & & \text { (Multiply) }
\end{aligned}
$$

Practice Problems: Do these problems on the journal page to find out!

Write each product using an exponent.

1. $2 \cdot 2 \cdot 2 \cdot 2$
2. $10 \cdot 10 \cdot 10$
3. $\left(\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}\right)$
4. $7 \times 7 \times 7 \times 7 \times 7$
5. $2.4 \bullet 2.4 \bullet 2.4$
6. $6 \bullet 6 \bullet 6 \bullet 6 \bullet 6 \bullet 6$

Write each power as a product of the factors. Then find the value.

1. 7^{3}
2. $\quad 2^{7}$
3. 3.1^{2}
4. $\left(\frac{1}{3}\right)^{3}$
