

Example 2

 $6x^{\circ} = 108^{\circ} \Rightarrow x = \frac{108^{\circ}}{6} \Rightarrow x = 18^{\circ}$

Solve for x.

There are a number of relationships in this diagram. First, $\angle 1$ and the 127° angle are supplementary, so we know that $m\angle 1+127^\circ=180^\circ$ so $m\angle 1=53^\circ$. Using the same idea, $m\angle 2=47^\circ$. Next, $m\angle 3+53^\circ+47^\circ=180^\circ$, so $m\angle 3=80^\circ$. Because angle 3 forms a vertical pair with the angle marked $7x + 3^\circ$, $80^\circ = 7x + 3^\circ$, so $x = 11^\circ$.

Example 3

Find the measure of the acute alternate interior angles. Parallel lines mean that alternate interior angles are equal, so $5x + 28^\circ = 2x + 46^\circ \Rightarrow 3x = 18^\circ \Rightarrow x = 6^\circ$. Use either algebraic angle measure: $2(6^\circ) + 46^\circ = 58^\circ$ for the measure of the acute angle.

GEOMETRY Connections

Use the geometric properties and theorems you have learned to solve for x in each diagram and write the property or theorem you use in each case.

© 2007 CPM Educational Program. All rights reserved.