\qquad

Lesson 6.I Calculating Area: Triangles

The area (A) of a triangle is one-half the of the base (b) times the height (h).

$$
\begin{gathered}
A=\frac{1}{2} \times b \times h \\
\text { or } \\
A=\frac{1}{2} b h
\end{gathered}
$$

$$
\begin{aligned}
A & =\frac{1}{2} \times 9 \times 4 \\
& =\frac{1}{2} \times 36 \\
& =18
\end{aligned}
$$

$A=18$ square inches

$$
\begin{aligned}
A & =\frac{1}{2} \times 5 \times 7 \\
& =\frac{1}{2} \times 35 \\
& =17 \frac{1}{2}
\end{aligned}
$$

$$
A=17 \frac{1}{2} \text { square feet }
$$

Find the area of each right triangle.
a
b
I.

$$
A=\ldots \text { sq. in. }
$$

$$
A=\ldots \text { sq. ft. }
$$

2.

$$
A=\ldots \text { sq. ft. }
$$

$$
A=\ldots \quad \text { sq. } \mathrm{yd} .
$$

\qquad

Lesson 6.I Calculating Area: Triangles

The area of a triangle is related to the area of a rectangle.

The dashed line indicates the height of the triangle.
rectangle: $A=8 \times 6=48$ sq. units
triangle: $A=\frac{1}{2}(8)(6)=24$ sq. units

Notice that in a right triangle the height is the length of one of the legs. This is not the case with acute and obtuse triangles.

Find the area of each triangle below.
a
I.

I 1 ft .
b

c

$$
A=\ldots \text { sq. } \mathrm{ft}
$$

$A=$ \qquad sq. yd .
$A=$ \qquad sq. in.
2.

$$
A=
$$

\qquad sq. ft.
$A=$ \qquad sq. cm

$$
A=\ldots \text { sq. } \mathrm{m}
$$

