Course Content
Chapter 01 – Sets
A set is a list of objects in no particular order; they could be numbers, letters, or even words. A Venn diagram is a way of representing sets visually.
0/7
Chapter 02 – Rational Numbers
In mathematics, a rational number is a number that can be expressed as the quotient or fraction p/q of two integers, a numerator p, and a non-zero denominator q. In this chapter, we will learn to represent rational numbers on a number line and perform arithmetic operations.
0/5
Chapter 03 – Decimals
Decimals are a set of numbers lying between integers on a number line. They are just another way to represent fractions in mathematics. In this chapter, we will learn about the conversion of decimals to rational numbers, the kinds of decimals, and absolute values.
0/6
Chapter 04 – Exponents
The exponent of a number says how many times to use that number in a multiplication. The laws of exponents simplify the multiplication and division operations and help to solve the problems easily. In this chapter, we are going to discuss the six important laws of exponents.
0/4
Chapter 05 – Square Root of Positive Numbers
Square root, in mathematics, is a factor of a number that, when multiplied by itself, gives the original number. In this chapter, we will learn about what makes perfect squares and will find the roots of positive numbers by considering real-life scenarios.
0/4
Chapter 06 – Direct and Inverse Variation
Variation means change. With direct variation, numbers change proportionately in the same direction, while with inverse variation, they change in opposite directions. In this chapter, we will earn how to solve direct and inverse variation problems, explore their definitions, and work examples to understand the equations and techniques for solving them. Also, we learn to find the continued ratio for two or more ratios.
0/9
Chapter 07 – Financial Arithmetic
Financial mathematics describes the application of mathematics and mathematical modeling to solve financial problems. In this chapter, we will learn about the concept of taxation, profit/markups, zakat & ushr, and how they relate to our daily life.
0/7
Chapter 08 – Algebraic Expressions
Algebraic expressions are the idea of expressing numbers using letters or alphabets without specifying their actual values. The algebraic equations which are valid for all values of variables in them are called algebraic identities. In this chapter, we will learn to perform operations on polynomials and to factorize an algebraic equation by using identities.
0/10
Chapter 09 – Linear Equations
Linear equations are equations having variables with power 1. ax+b = 0 is an example with one variable where x is the variable, and a and b are real numbers. In this chapter, we will learn the definition, type of solutions, and how to solve these equations with one variable and two variables using different methods along with examples.
0/10
Chapter 10 – Fundamentals of Geometry
Geometry is the study of different types of shapes, figures, and sizes in Maths or real life. In geometry, we learn about different angles, transformations, and similarities in the figures. It is important to know and understand some basic concepts. We will learn about working in different numbers of dimensions, and about some of the most fundamental concepts in geometry, including points, lines, and planes.
0/7
Chapter 11 – Practical Geometry
The practical Geometry chapter will teach you about lines and to construct two-dimensional given different kinds of measurements. A quadrilateral is a closed two-dimensional shape that has four sides and four angles. Any four-sided closed shape such as square, rectangle, rhombus, parallelogram, trapezium, etc. And a closed two-dimensional shape that has 3 sides and 3 angles is known as a triangle.
0/16
Chapter 12 – Circumference, Area and Volume
This topic comes under analytical geometry and the formulas for the volume and the surface area of the sphere were first discovered by Archimedes. In this chapter, we will learn about the area and volume of two-dimensional and three-dimensional shapes.
0/6
Chapter 13 – Information Handling
Frequency distribution, in statistics, is a graph or data set organized to show the frequency of occurrence of each possible outcome of a repeatable event observed many times. And, a pie chart is a way of representing data in a circular graph. Pie slices of the chart show the relative size of the data. In this chapter, we will learn to construct the frequency distribution table, some new pie chart vocabulary, and learn to construct the pie chart to represent the data.
0/5
Grade 7 – Mathematics
About Lesson

Polynomials

Polynomials are algebraic expressions that consist of variables and coefficients. Variables are also sometimes called indeterminates. We can perform arithmetic operations such as addition, subtraction, multiplication and also positive integer exponents for polynomial expressions but not division by variable. An example of a polynomial with one variable is x2+x-12. In this example, there are three terms: x2, x and -12. 

The word polynomial is derived from the Greek words ‘poly’ means ‘many‘ and ‘nominal’ means ‘terms‘, so altogether it said “many terms”. A polynomial can have any number of terms but not infinite.

Polynomials | Properties, Operations, Examples & Types

What is a Polynomial?

Polynomial is made up of two terms, namely Poly (meaning “many”) and Nominal (meaning “terms.”). A polynomial is defined as an expression which is composed of variables, constants and exponents, that are combined using the mathematical operations such as addition, subtraction, multiplication and division (No division operation by a variable). Based on the numbers of terms present in the expression, it is classified as monomial, binomial, and trinomial. Examples of constants, variables and exponents are as follows:

  • Constants. Example: 1, 2, 3, etc.
  • Variables. Example: g, h, x, y, etc.
  • Exponents: Example: 5 in x5 etc.

Polynomial Examples

Let us understand this by taking an example: 3x2 + 5. In the given polynomial, there are certain terms that we need to understand. Here, x is known as the variable. 3 which is multiplied to x2 has a special name. We denote it by the term “coefficient”. 5 is known as the constant. The power of the variable x is 2.

Below given are a few expressions that are not examples of a polynomial.

Not a Polynomial Reason
2x-2 Here, the exponent of variable ‘x’ is -2.
1/(y + 2) This is not an example of a polynomial since division operation in a polynomial cannot be performed by a variable.
√(2x) The exponent cannot be a fraction (here, 1/2) for a polynomial.

Notation

The polynomial function is denoted by P(x) where x represents the variable. For example,

P(x) = x2-5x+11

If the variable is denoted by a, then the function will be P(a)

Degree of a Polynomial

The degree of a polynomial is defined as the highest degree of a monomial within a polynomial. Thus, a polynomial equation having one variable which has the largest exponent is called a degree of the polynomial.

Polynomial Degree Example
Constant or Zero Polynomial 0 6
Linear Polynomial 1 3x+1
Quadratic Polynomial 2 4x2+1x+1
Cubic Polynomial 3 6x3+4x3+3x+1
Quartic Polynomial 4 6x4+3x3+3x2+2x+1

Example: 

Find the degree of the polynomial 6s4+ 3x2+ 5x +19

Solution:

The degree of the polynomial is 4.

Terms of a Polynomial

The terms of polynomials are the parts of the equation which are generally separated by “+” or “-” signs. So, each part of a polynomial in an equation is a term. For example, in a polynomial, say, 2x2 + 5 +4, the number of terms will be 3. The classification of a polynomial is done based on the number of terms in it.

Polynomial Terms Degree
P(x) = x3-2x2+3x+4 x3, -2x2, 3x and 4 3

Like Terms and Unlike Terms

Like terms in polynomials are those terms which have the same variable and same power. Terms that have different variables and/or different powers are known as unlike terms. Hence, if a polynomial has two variables, then all the same powers of any ONE variable will be known as like terms. Let us understand these two with the help of examples given below.

For example, 2x and 3x are like terms. Whereas, 3y4 and 2x3 are unlike terms.

Types of Polynomials

Polynomials can be categorized based on their degree and their power. Based on the numbers of terms, there are mainly three types of polynomials that are listed below:

  • Monomials
  • Binomials
  • Trinomials

Monomial

A monomial is an expression which contains only one term. For an expression to be a monomial, the single term should be a non-zero term. A few examples of monomials are:

  • 5x
  • 3
  • 6a4
  • -3xy

Binomial

A binomial is a polynomial expression which contains exactly two terms. A binomial can be considered as a sum or difference between two or more monomials. A few examples of binomials are:

  • – 5x+3,
  • 6a4 + 17x
  • xy2+xy

Trinomial

A trinomial is an expression which is composed of exactly three terms. A few examples of trinomial expressions are:

  • – 8a4+2x+7
  • 4x2 + 9x + 7

 

 

Introduction to Polynomials (examples, solutions, videos, activities)

Exercise Files
Polynomial Operations.pdf
Size: 67.58 KB
Mathematical Properties & Equivalent Expressions.pdf
Size: 31.78 KB
0% Complete